J-holomorphic curves in rough almost complex structures

Adam Coffman

based on joint work with Yifei Pan and Yuan Zhang

Indiana University - Purdue University Fort Wayne

MAA MathFest in Chicago

http://ipfw.edu/math http://google.com/+AdamCoffman

July 2017
Holomorphic functions

\[\mathbb{C} = (\mathbb{R}^2, i) \] has coordinates \(z = x + iy, \bar{z} = x - iy \).

Let \(f \) be a continuous function on a connected open set \(\Omega \subseteq \mathbb{C} \), \(f : \Omega \to \mathbb{C} \), with real/imaginary parts:

\[f(z) = u(x, y) + iv(x, y) \]

Notation for (classical, pointwise) partial derivatives:

\[\frac{\partial f}{\partial z} = f_z = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \bar{z}} = f_{\bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right). \]
Holomorphic functions

\(\mathbb{C} = (\mathbb{R}^2, i) \) has coordinates \(z = x + iy, \bar{z} = x - iy \).

Let \(f \) be a continuous function on a connected open set \(\Omega \subseteq \mathbb{C} \), \(f : \Omega \to \mathbb{C} \), with real/imaginary parts:

\[
f(z) = u(x, y) + iv(x, y)
\]

Notation for (classical, pointwise) partial derivatives:

\[
\frac{\partial f}{\partial z} = f_z = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \bar{z}} = f_{\bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).
\]

\(f \) is holomorphic means it satisfies the Cauchy-Riemann Equations:

\[
\begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
\end{bmatrix}
\begin{bmatrix}
 0 & -1 \\
 1 & 0
\end{bmatrix}
= \begin{bmatrix}
 0 & -1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
\end{bmatrix}
\implies \begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
\end{bmatrix}
\begin{bmatrix}
 0 & -1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
\end{bmatrix}
\begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
\end{bmatrix}
= 0.
\]

Adam Coffman (IPFW)
Rough almost complex structures
Holomorphic functions

Nice properties of a holomorphic function: \(\frac{\partial f}{\partial \bar{z}} \equiv 0 \Rightarrow \) :
Holomorphic functions

Nice properties of a holomorphic function: $\frac{\partial f}{\partial \overline{z}} \equiv 0 \implies$:

- \mathcal{C}^∞: f is smooth (all partial derivatives exist)
Holomorphic functions

Nice properties of a holomorphic function: \(\frac{\partial f}{\partial \bar{z}} \equiv 0 \implies : \)

- \(\mathcal{C}^\infty \): \(f \) is smooth (all partial derivatives exist)
- \(\mathcal{C}^\omega \): \(f \) is complex analytic (locally = convergent power series in \(z \))
Holomorphic functions

Nice properties of a holomorphic function: \(\frac{\partial f}{\partial \bar{z}} \equiv 0 \implies : \\
- \(\mathcal{C}^\infty \): \(f \) is smooth (all partial derivatives exist) \\
- \(\mathcal{C}^\omega \): \(f \) is complex analytic (locally = convergent power series in \(z \)) \\
- \(f \neq 0 \) has isolated zeros
Holomorphic functions

Nice properties of a holomorphic function: $\frac{\partial f}{\partial \bar{z}} \equiv 0 \implies$

- C^∞: f is smooth (all partial derivatives exist)
- C^ω: f is complex analytic (locally = convergent power series in z)
- $f \neq 0$ has isolated zeros

- **WUCP**: The Weak Unique Continuation Property: If two solutions f and g satisfy $f \equiv g$ on some open set, then $f \equiv g$
Holomorphic functions

Nice properties of a holomorphic function: $\frac{\partial f}{\partial z} \equiv 0 \implies$

- \mathcal{C}^∞: f is smooth (all partial derivatives exist)

- \mathcal{C}^ω: f is complex analytic (locally = convergent power series in z)

- $f \neq 0$ has isolated zeros

- **WUCP**: The Weak Unique Continuation Property: If two solutions f and g satisfy $f \equiv g$ on some open set, then $f \equiv g$

- **SUCP**: f has the Strong Unique Continuation Property: If all the derivatives vanish at some point p: for all a, b, c,

\[
\frac{\partial^a f}{\partial z^a} \bigg|_p = 0 \iff \frac{\partial^{b+c} f}{\partial x^b \partial y^c} \bigg|_p = 0,
\]

then $f \equiv 0$.
Two ways to generalize the Cauchy-Riemann equations for $f : \Omega \to \mathbb{C}$:
Two ways to generalize the Cauchy-Riemann equations for $f : \Omega \to \mathbb{C}$:

1. small changes to the “coefficients” of the differential equations;
Generalizations

Two ways to generalize the Cauchy-Riemann equations for $f : \Omega \to \mathbb{C}$:

1. small changes to the “coefficients” of the differential equations;
2. increase the target dimension to get vector valued $f : \Omega \to \mathbb{C}^n$
To generalize the Cauchy-Riemann Equation: \(\frac{\partial f}{\partial z} \equiv 0 \), by perturbing the coefficients:
Generalized analytic functions

To generalize the Cauchy-Riemann Equation: \(\frac{\partial f}{\partial \bar{z}} \equiv 0 \), by perturbing the coefficients:

- instead consider functions \(f \) where the \(\bar{z} \) derivative is just small compared to the \(z \) derivative:
Generalized analytic functions

To generalize the Cauchy-Riemann Equation: \(\frac{\partial f}{\partial \bar{z}} \equiv 0 \), by perturbing the coefficients:

- instead consider functions \(f \) where the \(\bar{z} \) derivative is just small compared to the \(z \) derivative:

\[
\frac{\partial f}{\partial \bar{z}} = \mu(z) \cdot \frac{\partial f}{\partial z}
\]

for some complex valued function \(\mu(z) \) with \(\sup |\mu(z)| < 1 \).
Generalized analytic functions

To generalize the Cauchy-Riemann Equation: \(\frac{\partial f}{\partial \bar{z}} \equiv 0 \), by perturbing the coefficients:

- instead consider functions \(f \) where the \(\bar{z} \) derivative is just **small** compared to the \(z \) derivative:

 \[
 \frac{\partial f}{\partial \bar{z}} = \mu(z) \cdot \frac{\partial f}{\partial z}
 \]

 for some complex valued function \(\mu(z) \) with \(\sup |\mu(z)| < 1 \).

- **Matrix version of generalized C-R equation:**

 \[
 \begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
 \end{bmatrix}
 \begin{bmatrix}
 0 & -1 \\
 1 & 0
 \end{bmatrix}
 = J(f(z)) \cdot
 \begin{bmatrix}
 u_x & u_y \\
 v_x & v_y
 \end{bmatrix}
 \]

 for a \(2 \times 2 \) real matrix \(J \) with:
 - \(J \cdot J = -Id \),
 - entries depending continuously on the coordinates in the target space

 \[
 J(x, y) \approx J_{std} =
 \begin{bmatrix}
 0 & -1 \\
 1 & 0
 \end{bmatrix}
 \]
Generalized analytic functions

Nice properties of solutions of $\frac{\partial f}{\partial \bar{z}} = \mu(z) \cdot \frac{\partial f}{\partial z}$

(under mild hypotheses on μ: measurable, $\|\mu\|_{\infty} < 1$; and on f: $W^{1,2}_{loc}$)
Generalized analytic functions

Nice properties of solutions of \(\frac{\partial f}{\partial z} = \mu(z) \cdot \overline{\frac{\partial f}{\partial \bar{z}}} \)

(under mild hypotheses on \(\mu \): measurable, \(\|\mu\|_\infty < 1 \); and on \(f \): \(W^{1,2}_{loc} \))

- \(f \not\equiv 0 \) has isolated zeros, with a notion of “finite order of vanishing”
Nice properties of solutions of $\frac{\partial f}{\partial z} = \mu(z) \cdot \frac{\bar{\partial f}}{\partial z}$ (under mild hypotheses on μ: measurable, $\|\mu\|_{\infty} < 1$; and on f: $W^{1,2}_{loc}$)

- $f \not\equiv 0$ has isolated zeros, with a notion of “finite order of vanishing”

- **SUCP**: Assuming the derivatives exist, all derivatives $= 0$ at a point $\implies f \equiv 0$.
Nice properties of solutions of \(\frac{\partial f}{\partial z} = \mu(z) \cdot \frac{\overline{\partial f}}{\partial \overline{z}} \) (under mild hypotheses on \(\mu \): measurable, \(\| \mu \|_\infty < 1 \); and on \(f \): \(W^{1,2}_{loc} \))

- \(f \not\equiv 0 \) has isolated zeros, with a notion of “finite order of vanishing”

- **SUCP:** Assuming the derivatives exist, all derivatives \(= 0 \) at a point \(\implies f \equiv 0 \).

- **SUCP \implies WUCP** (again assuming derivatives exist).
A holomorphic curve is a map $\Omega \rightarrow \mathbb{C}^n$,

$$\vec{f}(z) = [f_1(z), \ldots, f_n(z)] ,$$

where all the components are holomorphic: $\frac{\partial f_k}{\partial z} \equiv 0$
A holomorphic curve is a map $\Omega \rightarrow \mathbb{C}^n$,

$$ \vec{f}(z) = [f_1(z), \ldots, f_n(z)], $$

where all the components are holomorphic: $\frac{\partial f_k}{\partial \bar{z}} \equiv 0 \iff$

$$ \begin{bmatrix} df(x, y) \end{bmatrix}_{2n \times 2} \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \vdots \\ 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} df(x, y) \end{bmatrix}_{2n \times 2}. $$
Holomorphic curves

A holomorphic curve is a map $\Omega \rightarrow \mathbb{C}^n$,

$$\vec{f}(z) = [f_1(z), \ldots, f_n(z)],$$

where all the components are holomorphic: $\frac{\partial f_k}{\partial \bar{z}} \equiv 0 \iff$

$$\begin{bmatrix} d\vec{f}(x, y) \end{bmatrix}_{2n \times 2} \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} d\vec{f}(x, y) \end{bmatrix}_{2n \times 2}.$$

Holomorphic curves have the same nice properties as holomorphic functions.
Pseudoholomorphic curves — or J-holomorphic curves

Modify the $2n \times 2n$ coefficient matrix to get an “Almost Complex Structure” ... $J_{2n \times 2n}$ with real entries depending continuously on the coordinates in \mathbb{C}^n, satisfying $J \cdot J = -Id$.
Modify the $2n \times 2n$ coefficient matrix to get an “Almost Complex Structure” $J_{2n \times 2n}$ with real entries depending continuously on the coordinates in \mathbb{C}^n, satisfying $J \cdot J = -Id$.

A J-holomorphic curve $\tilde{f}(z) = [f_1(z), \ldots, f_n(z)]$ is a differentiable map $\Omega \to \mathbb{C}^n = \mathbb{R}^{2n}$ satisfying:

$$d\tilde{f}(x, y) \cdot J_{std} = J(\tilde{f}(x, y)) \cdot d\tilde{f}(x, y).$$
Pseudoholomorphic curves — or J-holomorphic curves

Modify the $2n \times 2n$ coefficient matrix to get an “Almost Complex Structure” . . . $J_{2n \times 2n}$ with real entries depending continuously on the coordinates in \mathbb{C}^n, satisfying $J \cdot J = -Id$.

A J-holomorphic curve $\vec{f}(z) = [f_1(z), \ldots, f_n(z)]$ is a differentiable map $\Omega \to \mathbb{C}^n = \mathbb{R}^{2n}$ satisfying:

$$d\vec{f}(x, y) \cdot J_{std} = J(\vec{f}(x, y)) \cdot d\vec{f}(x, y).$$

For J close to J_{std}, some linear algebra \implies

$$\begin{bmatrix}
\frac{\partial f_1}{\partial \bar{z}} \\
\vdots \\
\frac{\partial f_n}{\partial \bar{z}}
\end{bmatrix} = [Q(f(z))]_{n \times n} \cdot \begin{bmatrix}
\frac{\partial f_1}{\partial z} \\
\vdots \\
\frac{\partial f_n}{\partial z}
\end{bmatrix}.$$

for some matrix Q with complex entries, derived from J with the same “regularity”, $Q = 0$ when $J = J_{std}$.

Adam Coffman (IPFW)

Rough almost complex structures
Nice properties of J-holomorphic curves

- Local Regularity: If J is $C^{k,\alpha}$, $k = 0, 1, 2, \ldots$, then curves \vec{f} are $C^{k+1,\alpha}$.
Nice properties of J-holomorphic curves

- **Local Regularity:** If J is $C^{k,\alpha}$, $k = 0, 1, 2, \ldots$, then curves \vec{f} are $C^{k+1,\alpha}$.

- **Uniqueness:** If J is Lipschitz, then curves $\vec{f} \not\equiv \vec{0}$ have isolated zeros, satisfy SUCP, WUCP.
Nice properties of J-holomorphic curves

- **Local Regularity:** If J is $C^{k,\alpha}$, $k = 0, 1, 2, \ldots$, then curves \vec{f} are $C^{k+1,\alpha}$.

- **Uniqueness:** If J is Lipschitz, then curves $\vec{f} \neq \vec{0}$ have isolated zeros, satisfy SUCP, WUCP

- **Global:** If an almost complex manifold has $C^{1,\alpha}$ operator J, then the Kobayashi-Royden pseudo-norm is upper semicontinuous.
Nice properties of J-holomorphic curves

- **Local Regularity**: If J is $C^{k,\alpha}$, $k = 0, 1, 2, \ldots$, then curves \vec{f} are $C^{k+1,\alpha}$.

- **Uniqueness**: If J is Lipschitz, then curves $\vec{f} \neq \vec{0}$ have isolated zeros, satisfy SUCP, WUCP.

- **Global**: If an almost complex manifold has $C^{1,\alpha}$ operator J, then the Kobayashi-Royden pseudo-norm is upper semicontinuous. (KR measures the size of J-holomorphic disks)
Nice properties of J-holomorphic curves

- **Local Regularity:** If J is $C^{k,\alpha}$, $k = 0, 1, 2, \ldots$, then curves \vec{f} are $C^{k+1,\alpha}$.

- **Uniqueness:** If J is Lipschitz, then curves $\vec{f} \not\equiv \vec{0}$ have isolated zeros, satisfy SUCP, WUCP.

- **Global:** If an almost complex manifold has $C^{1,\alpha}$ operator J, then the Kobayashi-Royden pseudo-norm is upper semicontinuous. (KR measures the size of J-holomorphic disks)

Reference: [Ivashkovich-Shevchishin2011]
Countereamples for uniqueness: \(C^{0,\alpha} \) structure

For \(0 < \alpha < 1 \), an almost complex structure on \(\mathbb{C}^2 = \mathbb{R}^4 \):

\[
J(z_1, z_2) = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & -2|z_2|^{\alpha} & 0 & -1 \\
-2|z_2|^{\alpha} & 0 & 1 & 0 \\
\end{bmatrix}.
\]
Counterexamples for uniqueness: $\mathcal{C}^{0,\alpha}$ structure

For $0 < \alpha < 1$, an almost complex structure on $\mathbb{C}^2 = \mathbb{R}^4$:

$$J(z_1, z_2) = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & -2|z_2|^\alpha & 0 & -1 \\
-2|z_2|^\alpha & 0 & 1 & 0
\end{bmatrix}.$$

C^1 maps $\mathbb{R}^2 \rightarrow \mathbb{R}^4$:

$$\vec{f}(x, y) = [x, y, 0, 0]$$

$$\vec{g}(x, y) = [x, y, u(x), 0]$$

\vec{f} is J-holomorphic, and if $\frac{du}{dx} = 2|u|^\alpha$, then \vec{g} is J-holomorphic.
Counterexamples for uniqueness: $C^{0,\alpha}$ structure

For $0 < \alpha < 1$, an almost complex structure on $\mathbb{C}^2 = \mathbb{R}^4$:

$$J(z_1, z_2) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -2|z_2|^\alpha & 0 & -1 \\ -2|z_2|^\alpha & 0 & 1 & 0 \end{bmatrix}.$$

C^1 maps $\mathbb{R}^2 \to \mathbb{R}^4$:

$$\vec{f}(x, y) = [x, y, 0, 0]$$

$$\vec{g}(x, y) = [x, y, u(x), 0]$$

\vec{f} is J-holomorphic, and if \(\frac{du}{dx} = 2|u|^\alpha \), then \vec{g} is J-holomorphic.

This ODE doesn’t have unique solutions for initial conditions $u(0) = u'(0) = 0$:

$$u(x) = \begin{cases} 0 & x \leq c \\ (2 - 2\alpha)(x - c))^{1/(1-\alpha)} & x > c \end{cases}$$
Counterexamples for uniqueness: $C^{0,\alpha}$ structure

Conclude: $\vec{f} \equiv \vec{g}$ on an open set but $\vec{f} \not\equiv \vec{g}$,

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.
Counterexamples for uniqueness: $\mathcal{C}^{0,\alpha}$ structure

Conclude: $\vec{f} \equiv \vec{g}$ on an open set but $\vec{f} \not\equiv \vec{g}$,

so for (non-Lipschitz) J with Hölder continuity $\mathcal{C}^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

For $0 < \alpha \leq \frac{2}{3}$, this phenomenon was used by [Ivashkovich-Pinchuk-Rosay2005] to construct an example of an almost complex manifold where J is $\mathcal{C}^{0,\alpha}$ and the Kobayashi-Royden pseudo-norm is not upper semicontinuous.
Counterexamples for uniqueness: $C^{0,\alpha}$ structure

Conclude: $\vec{f} \equiv \vec{g}$ on an open set but $\vec{f} \neq \vec{g}$,

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

For $0 < \alpha \leq \frac{2}{3}$, this phenomenon was used by [Ivashkovich-Pinchuk-Rosay2005] to construct an example of an almost complex manifold where J is $C^{0,\alpha}$ and the Kobayashi-Royden pseudo-norm is not upper semicontinuous.

Such an example exists for any $0 < \alpha < 1$: [C—Pan2011].
Counterexamples for uniqueness: $C^{0,\alpha}$ structure

Conclude: $\vec{f} \equiv \vec{g}$ on an open set but $\vec{f} \neq \vec{g}$,

so for (non-Lipschitz) J with Hölder continuity $C^{0,\alpha}$, the Weak Unique Continuation Property need not hold.

For $0 < \alpha \leq \frac{2}{3}$, this phenomenon was used by [Ivashkovich-Pinchuk-Rosay 2005] to construct an example of an almost complex manifold where J is $C^{0,\alpha}$ and the Kobayashi-Royden pseudo-norm is not upper semicontinuous.

Such an example exists for any $0 < \alpha < 1$: [C—Pan 2011].

(still open for Lipschitz or C^1 cases)
Counterexamples for uniqueness: C^0 structure

Proposition

[Rosay2010] *There exist:*

- a complex 2×2 matrix $Q(z)$ with continuous entries and $Q(0) = [0]$,
- a non-constant, C^∞ smooth map $\vec{g} : \mathbb{C} \rightarrow \mathbb{C}^2$, such that:

$$\frac{\partial \vec{g}}{\partial \bar{z}} = Q(z) \cdot \frac{\partial \vec{g}}{\partial z},$$

and all derivatives of \vec{g} vanish at $z = 0$. ☑
Counterexamples for uniqueness: C^0 structure

Proposition

[Rosay2010] **There exist:**

- A complex 2×2 matrix $Q(z)$ with continuous entries and $Q(0) = [0]$,
- A non-constant, C^∞ smooth map $\tilde{g} : \mathbb{C} \to \mathbb{C}^2$, such that:

$$\frac{\partial \tilde{g}}{\partial \bar{z}} = Q(z) \cdot \frac{\partial \tilde{g}}{\partial z},$$

and all derivatives of \tilde{g} vanish at $z = 0$.

\tilde{g} can have an isolated zero of ∞ order, or a convergent sequence of zeros.
Counterexamples for uniqueness: \mathcal{C}^0 structure

Proposition

[Rosay2010] *There exist:*

- a complex 2×2 matrix $\mathbf{Q}(z)$ with continuous entries and $\mathbf{Q}(0) = [0]$,
- a non-constant, \mathcal{C}^∞ smooth map $\mathbf{\tilde{g}} : \mathbb{C} \to \mathbb{C}^2$, such that:
\[
\frac{\partial \mathbf{\tilde{g}}}{\partial \bar{z}} = \mathbf{Q}(z) \cdot \frac{\partial \mathbf{\tilde{g}}}{\partial z},
\]
and all derivatives of $\mathbf{\tilde{g}}$ vanish at $z = 0$.

$\mathbf{\tilde{g}}$ can have an isolated zero of ∞ order, or a convergent sequence of zeros.

[C—Pan2012]: There exists such a pair $\mathbf{\tilde{g}}, \mathbf{Q}$ where the \mathbf{Q} entries also vanish to infinite order: $z^{-k} \mathbf{Q} \to [0]$ for all k. (but \mathbf{Q} is not Lipschitz in any neighborhood of 0)
Counterexamples for uniqueness: C^0 structure

Proposition

[Rosay2010] *There exist:*

- a complex 2×2 matrix $Q(z)$ with continuous entries and $Q(0) = [0]$,
- a non-constant, C^∞ smooth map $\vec{g} : \mathbb{C} \to \mathbb{C}^2$, such that:

\[
\frac{\partial \vec{g}}{\partial \bar{z}} = Q(z) \cdot \frac{\partial \vec{g}}{\partial z},
\]

and all derivatives of \vec{g} vanish at $z = 0$. ■

\vec{g} can have an isolated zero of ∞ order, or a convergent sequence of zeros.

[C—Pan2012]: There exists such a pair \vec{g}, Q where the Q entries also vanish to infinite order: $z^{-k}Q \to [0]$ for all k. (but Q is not Lipschitz in any neighborhood of 0)

This phenomenon can be used to construct a continuous J on \mathbb{C}^4 (with $J - J_{std}$ vanishing to infinite order) and C^∞ smooth J-holomorphic curves \vec{f} without the SUCP property.
Counterexample for regularity: $\alpha \to 0^+$

Proposition

[C—Pan-Zhang2017] There exists a (real) differentiable function $V : \mathbb{C} \to \mathbb{C}$ such that $\frac{\partial V}{\partial \bar{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous. □
Counterexample for regularity: \(\alpha \to 0^+ \)

Proposition

[C—Pan-Zhang\,2017] There exists a (real) differentiable function \(V : \mathbb{C} \to \mathbb{C} \) such that \(\frac{\partial V}{\partial \bar{z}} \) is continuous and \(\frac{\partial V}{\partial z} \) is discontinuous. □

Let \(Q(z_1, z_2) = \begin{bmatrix} 0 & \frac{\partial V(z_2)}{\partial \bar{z}_2} \\ 0 & 0 \end{bmatrix} \). Then \(\vec{f}(z) = \begin{bmatrix} f_1(z) \\ z \end{bmatrix} \) \(J \)-holomorphic

\[\frac{\partial \vec{f}}{\partial z} = Q(\vec{f}(z)) \cdot \frac{\partial \vec{f}}{\partial \bar{z}} \Rightarrow \frac{\partial f_1}{\partial \bar{z}} = \frac{\partial V(z)}{\partial \bar{z}} \Rightarrow f_1(z) = V(z) + C(z) \text{ for some holomorphic } C. \]
Counterexample for regularity: $\alpha \to 0^+$

Proposition

[C—Pan-Zhang2017] There exists a (real) differentiable function $V : \mathbb{C} \to \mathbb{C}$ such that $\frac{\partial V}{\partial \bar{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous.

Let $Q(z_1, z_2) = \begin{bmatrix} 0 & \frac{\partial V(z_2)}{\partial z_2} \\ 0 & 0 \end{bmatrix}$. Then $\tilde{f}(z) = \begin{bmatrix} f_1(z) \\ z \end{bmatrix}$ J-holomorphic

$\implies \frac{\partial \tilde{f}}{\partial z} = Q(\tilde{f}(z)) \cdot \frac{\partial \tilde{f}}{\partial z} \implies \frac{\partial f_1}{\partial z} = \frac{\partial V(z)}{\partial z} \implies f_1(z) = V(z) + C(z)$ for some holomorphic C.

So, J is a continuous almost complex structure (but not Hölder), admitting a J-holomorphic curve \tilde{f} which is differentiable but not C^1.
Counterexample for regularity: $\alpha \rightarrow 0^+$

Proposition

[C—Pan-Zhang2017] There exists a (real) differentiable function $V: \mathbb{C} \rightarrow \mathbb{C}$ such that $\frac{\partial V}{\partial \bar{z}}$ is continuous and $\frac{\partial V}{\partial z}$ is discontinuous. □

Let $Q(z_1, z_2) = \begin{bmatrix} 0 & \frac{\partial V(z_2)}{\partial \bar{z}_2} \\ 0 & 0 \end{bmatrix}$. Then $\vec{f}(z) = \begin{bmatrix} f_1(z) \\ z \end{bmatrix}$ J-holomorphic

$\Rightarrow \frac{\partial \vec{f}}{\partial z} = Q(\vec{f}(z)) \cdot \frac{\partial \vec{f}}{\partial \bar{z}} \Rightarrow \frac{\partial f_1}{\partial \bar{z}} = \frac{\partial V(z)}{\partial \bar{z}} \Rightarrow f_1(z) = V(z) + C(z)$ for some holomorphic C.

So, J is a continuous almost complex structure (but not Hölder), admitting a J-holomorphic curve \vec{f} which is differentiable but not C^1.

Thank you!

Yuan Zhang’s research supported by National Science Foundation grant DMS-1265330.

