This document provides an overview of considerations for migrating from the PIC16F87XA product family to the PIC16F88X devices. When undertaking this migration, we recommend downloading data sheets and errata documents on these devices from our web site, located at http://www.microchip.com.

Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

2: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.

Table 1 shows the considerations that must be taken into account when migrating from the PIC16F87XA to the PIC16F88X.

TABLE 1: PIC16F87XA → PIC16F88X MIGRATION DIFFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Difference</th>
<th>H/W</th>
<th>S/W</th>
<th>Prog.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ports A, B, and E</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Weak pull-ups are individually configurable</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>WDT (Time-out period may be extended)</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Timer1 with gate control</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 independent analog comparators</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ECCP and CCP</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Additional A/D channels</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Enhanced USART with auto-baud</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Configuration Word</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BOR voltage is selectable</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Program Flash memory write</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Parallel slave port</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- H/W – Issues may exist with regard to the application circuit.
- S/W – Issues may exist with regard to the user program.
- Programming – Issues may exist with regard to programming the device.
CODE CONVERSION

The vast majority of the code that was developed for the PIC16F87XA family is portable to its corresponding PIC16F88X counterpart. However, in some cases, some changes may be required depending on which feature set is being used. To migrate source code to the PIC16F88X, the following steps must be performed:

1. Replace the PIC16F87XA include file with the corresponding PIC16F88X include file.
2. Configure the ANSEL and ANSELH registers to assure proper operation of PORTA, PORTB and PORTE. The ANSEL and ANSELH registers default state disables the digital input buffer forcing these port pins to always read as '0'.
3. Any source code that made use of the Parallel Slave Port (PSP) peripheral will need to be rewritten. The PSP peripheral does not exist in the PIC16F88X product family.
4. Make the necessary changes to the new or enhanced peripherals that are being used, as listed below.
5. Verify the Configuration bits are set properly.

PORTA

The ANSEL register is used to configure the Input mode of pins AN<7:0>, respectively. If an analog function is required on AN<4:0> the corresponding bit of the ANSEL register should be set. Once the ANSEL bit is set, the digital input driver will be disabled and the corresponding PORTA bit, if read, will read as '0'. By default ANSEL is 0FFh. For a pin on PORTA to operate as a digital input, the corresponding ANSEL bit must be cleared. ANSEL has no effect on the output functionality of PORTA.

RA0 has the ULPWU (ultra low-power wake-up) multiplexed on the pin. The ULPWU is enabled by setting the ULPWUE bit of the PCON register. By default the ULPWU is off.

RA6 and RA7 are new pins for PORTA. In XT, HS or LP Clock modes these port pins will act as unimplemented pins and will read as '0'. In RCIO Clocking mode RA6 will function as an IO.

PORTB

The ANSELH register is used to configure the Input mode of pins AN<13:8>, respectively. If an analog function is required on AN<7:5> the corresponding bit of the ANSEL register should be set. Once the ANSEL bit is set, the digital input driver will be disabled and the corresponding PORTB bit, if read, will read as '0'. By default ANSEL is 0FFh. For a pin on PORTB to operate as a digital input, the corresponding ANSELH bit must be cleared. ANSEL has no effect on the output functionality of PORTB.

PORTE

The ANSEL register is used to configure the Input mode of pins AN<7:0>, respectively. If an analog function is required on AN<7:5> the corresponding bit of the ANSEL register should be set. Once the ANSEL bit is set, the digital input driver will be disabled and the corresponding PORTE bit, if read, will read as '0'. By default ANSEL is 0FFh. For a pin on PORTE to operate as a digital input, the corresponding ANSEL bit must be cleared. ANSEL has no effect on the output functionality of PORTE.

RE3 is a new input only pin to PORTE. When configured for external MCLR, RE3 acts as an unimplemented pin and always reads as '0'.

WEAK PULL-UPS ON PORTB

The weak pull-ups on PORTB now have individual control via the WPUB register. Clearing the RBPU bit of the OPTION register, the weak pull-up feature is enabled. By default all individual weak pull-ups will be enabled. No software changes should be needed for this feature to operate as intended.

INTERRUPT-ON-CHANGE PORTB

The IOC on PORTB now has individual control via the IOCB register. Setting the RBIE bit of the INTCON register enables the IOC feature. By default, all individual interrupt-on-change are disabled. For software compatibility the following should be written to the IOCB register:

EXAMPLE 1: COMPATIBILITY FOR INTERRUPT-ON-CHANGE PORTB

IOCB b'11111111'

EXTENDED WATCHDOG TIMER (WDT)

The WDTCON register is a new register to allow more flexibility in the watchdog time-out period. The WDTCON register in conjunction with the shared prescaler of Timer0, allows the time-out period to vary from 1ms to 268 seconds. The default setting of the WDTCON register sets the time-out period to be 17 ms with no prescaler. No software changes are required to have the watchdog time-out period to stay the same.
TIMER1 WITH GATE ENABLE

Two bits have been added to the T1CON register which were previously unimplemented. Bit 6 (TMR1GE) selects if Timer1 is gated by the T1G pin and bit 7 (T1GINV) changes the T1G pin from being active-high to active-low. By default, TMR1GE is off. Source code must have bit 6 of T1CON cleared in order for Timer1 to not be effected by the TMR1GE function.

EXAMPLE 2: TIMER1 WITH GATE ENABLE

T1CON b’x0xxxxxx’

COMPARATOR MODULES

The comparator module has changed from the PIC16F87XA to the PIC16F88X. The Comparator modes have been removed in favor of having two independent comparators. Each comparator has a separate control register and the old CMCON register of PIC16F87XA no longer exists. For each Comparator mode, the new settings should be as follows:

Note 1: CMCON of the PIC16F87XA is in bank 1. CM1CON0, CM2CON0 and CM2CON1 of the PIC16F88X are in bank 2.

1: The SFRCON register should be left in its default state of 00h.

2: The CM1CON0 register should be left in its default state of 00h.

3: CM1CON0 register has been renamed VCON and it was moved from address 9Dh to 97h in the memory map. The functionality of CM1CON0 has not changed.

EXAMPLE 3: MODE 000: COMPARATOR RESET

CM1CON0 b’00000000’ (default)
CM2CON0 b’00000000’ (default)
CM2CON1 02h (default)
ANSEL b’xxxx1111’

EXAMPLE 4: MODE 001: ONE INDEPENDENT COMPARATOR WITH OUTPUT

CM1CON0 b’10100100’
CM2CON0 b’00000000’ (default)
CM2CON1 02h (default)
ANSEL b’xxxx1001’

EXAMPLE 5: MODE 010: TWO INDEPENDENT COMPARATORS

CM1CON0 b’100x0000’
CM2CON0 b’100x0001’
CM2CON1 02h (default)
ANSEL b’xxxx1111’

EXAMPLE 6: MODE 011: TWO INDEPENDENT COMPARATORS WITH OUTPUTS

CM1CON0 b’101x0000’
CM2CON0 b’101x0001’
CM2CON1 02h (default)
ANSEL b’xxxx1111’

EXAMPLE 7: MODE 100: TWO COMMON REFERENCE COMPARATORS

CM1CON0 b’100x0000’
CM2CON0 b’100x0001’
CM2CON1 02h (default)
ANSEL b’xxxx1011’

Comparator 2 will not function properly if this is the mode previously used. The positive input of comparator 2 cannot be mapped to the positive input of comparator 1 via software. The following settings have the positive input of comparator 2 mapped to RA2.

EXAMPLE 8: MODE 101: TWO COMMON REFERENCE COMPARATORS WITH OUTPUTS

CM1CON0 b’101x0000’
CM2CON0 b’101x0001’
CM2CON1 02h (default)
ANSEL b’xxxx1011’

Comparator 2 will not function properly if this is the mode previously used. The positive input of comparator 2 cannot be mapped to the positive input of comparator 1 via software. The following settings have the positive input of comparator 2 mapped to RA2.
EXAMPLE 9: MODE 110: FOUR INPUTS MULTIPLEXED TO TWO COMPARATORS.

Comparator 1 and comparator 2 may not function properly if this is the mode previously used. The negative input of comparator 1 can not be mapped to RA3 and the negative input of comparator 2 can not be mapped to RA2 via software. The following settings have the negative input of comparator 1 mapped to RA0 and the negative input of comparator 2 mapped to RA1.

CM1CON0 b'100x0100'
CM2CON0 b'100x0101'
CM2CON1 32h
ANSEL b'xxxx1111'

EXAMPLE 10: MODE 111: COMPARATORS OFF

CM1CON0 b'00000000' (default)
CM2CON0 b'00000000' (default)
CM2CON1 02h (default)
ANSEL b'xxxx0000'

ANALOG-TO-DIGITAL CONVERTER

There are three major changes with the A/D module that affect the ADCON0 and ADCON1 registers.

1. One conversion clock select bit was removed from ADCON1, leaving 4 clock selections to time an A/D conversion.
2. One additional channel select bit was added to ADCON0 to allow selection of channels AN9-AN13.
3. The port Configuration bits of ADCON1 register have been removed. Determination of analog or digital for an individual pin is now provided by the ANSELH:ANSEL register pair. If an analog function is required on AN<13:0> the corresponding bit of the ANSELH:ANSEL register pair should be set. Once the bit is set, the digital input driver of the corresponding port pin will be disabled. By default ANSELH and ANSEL are 0FFh.

To implement these changes both ADCON0 and ADCON1 have been redefined. These registers along with the ANSELH and ANSEL registers will have to be reconfigured to get a proper conversion.
REGISTER 1: ADCON0

<table>
<thead>
<tr>
<th>bit 7-6</th>
<th>ADCS<1:0>: A/D Conversion Clock Select bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Fosc/2</td>
</tr>
<tr>
<td>01</td>
<td>Fosc/8</td>
</tr>
<tr>
<td>10</td>
<td>Fosc/32</td>
</tr>
<tr>
<td>11</td>
<td>Frc (clock derived from a dedicated internal oscillator = 500 kHz max.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 5-2</th>
<th>CHS<3:0>: Analog Channel Select bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>AN0</td>
</tr>
<tr>
<td>0001</td>
<td>AN1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>AN13</td>
</tr>
<tr>
<td>1110</td>
<td>CVREF</td>
</tr>
<tr>
<td>1111</td>
<td>Fixed Ref (0.6 volt fixed reference)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 1</th>
<th>GO/DONE: A/D Conversion Status bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.</td>
</tr>
<tr>
<td>0</td>
<td>A/D conversion completed/not in progress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 0</th>
<th>ADON: ADC Enable bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADC is enabled</td>
</tr>
<tr>
<td>0</td>
<td>ADC is disabled and consumes no operating current</td>
</tr>
</tbody>
</table>

REGISTER 2: ADCON1

<table>
<thead>
<tr>
<th>bit 7-6</th>
<th>VCFG1 VCFG1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 7</th>
<th>ADFM: A/D Conversion Result Format Select bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Right justified</td>
</tr>
<tr>
<td>0</td>
<td>Left justified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 6</th>
<th>Unimplemented: Read as '0'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>bit 5</th>
<th>VCFG1: Voltage Reference bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF- pin</td>
</tr>
<tr>
<td>0</td>
<td>VSS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 4</th>
<th>VCFG1: Voltage Reference bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF+ pin</td>
</tr>
<tr>
<td>0</td>
<td>VDD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 3-0</th>
<th>Unimplemented: Read as '0'</th>
</tr>
</thead>
</table>
ECCP AND CCP MODULES

The only change to the CCP modules is in the PWM mode of CCP1. No changes have been made to the Capture or Compare modes of the CCP or ECCP. Bits 7 and 6 of the CCP1CON register, which were previously unimplemented, have been added to control the P1B, P1C and P1D outputs. These outputs are typically used for driving a Half Bridge or Full Bridge and are only active in CCP1’s PWM mode. To disable the P1B, P1C and P1D outputs, bits 7 and 6 of CCP1CON should be cleared.

EXAMPLE 11: CLEARING CCP1CON BITS 7 AND 6

```
CCP1CON b'00xxxxxx'
```

EUSART WITH AUTO-BAUD

The baud rate of EUSART is controlled by the 16-bit SBRGH:SPBRG register pair. Previously the AUSART baud rate was controlled by the 8-bit SPBRG register. To have the EUSART operate at the same baud rate of the AUSART, both the SPBRGH and the BRG16-bit of the BAUDCTL register must be cleared.

The EUSART also incorporates Auto-Baud Detection. Auto-baud is controlled exclusively by the BAUDCTL register and the SENDB bit of TXSTA. To disable this feature both the SENDB bit of the TXSTA register and the BAUDCTL register must remain cleared.

EXAMPLE 12:

```
TXSTA b'xxxx0xxx'
SPBRGH b'00000000'
BAUDCTL b'00000000'
```

PROGRAM FLASH MEMORY WRITE

<table>
<thead>
<tr>
<th></th>
<th>PIC16F87XA</th>
<th>PIC16F882/883/884</th>
<th>PIC16F886/887</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erase Size</td>
<td>4 words</td>
<td>16 words</td>
<td>16 words</td>
</tr>
<tr>
<td>Write Block Size</td>
<td>4 words</td>
<td>4 words</td>
<td>8 words</td>
</tr>
</tbody>
</table>

Writing to program memory for the PIC16F88X parts is performed in multiple block write to a row. A block consists of either four or eight words of sequential addresses and a row is defined as 16 words with the first address as EEADR<3:0>=0000. To write a row, you must write blocks sequentially starting at the first address of the row. The first block written to a row erases the entire row. Consecutive block writes to the same row will not cause an additional row erase. All other aspects of the Program Flash Memory Write remain the same.

CONFIGURATION WORDS

The Configuration Word of the PIC16F87XA product family has been expanded to two Configuration Words. Below are the definitions of the two Configuration Words for the PIC16F88X product family, verify they are set properly.

BROWN OUT DETECT

The Brown-out Detect circuit now has 2 separate voltages in which it can operate at, either 2.1 volts or 4.0 volts. Determination of the Brown-out trip point is determined by the setting of the BOR4 bit of Configuration Word 2. To enable the Brown-out Detect, there are now 3 different modes:

EXAMPLE 13: BROWN-OUT RESET - CONFIGURATION WORD 1

<table>
<thead>
<tr>
<th>bit 9-8</th>
<th>BOREN<1:0>: Brown-out Reset Selection bits(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>BOR enabled</td>
</tr>
<tr>
<td>10</td>
<td>BOR enabled during operation and disabled in Sleep</td>
</tr>
<tr>
<td>01</td>
<td>BOR controlled by SBOREN bit of the PCON register</td>
</tr>
<tr>
<td>00</td>
<td>BOR disabled</td>
</tr>
</tbody>
</table>

Note 1: It is recommended for compatibility to have the BOREN<1:0> set to '11'.
REGISTER 3: CONFIG: CONFIGURATION WORD REGISTER

<table>
<thead>
<tr>
<th>bit 15-8</th>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG</td>
<td>LVP</td>
</tr>
<tr>
<td>FCME</td>
<td>IESO</td>
</tr>
<tr>
<td>BOREN1</td>
<td>BOREN0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit P = Programmable
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘1’
bit 13 DEBUG: In-Circuit Debugger Mode bit
1 = In-Circuit Debugger disabled, RB6/CSPCLK and RB7/ICSPDAT are general purpose I/O pins
0 = In-Circuit Debugger enabled, RB6/CSPCLK and RB7/ICSPDAT are dedicated to the debugger
bit 12 LVP: Low Voltage Programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 pin is digital I/O, HV on MCLR must be used for programming
bit 11 FCMEN: Fail-Safe Clock Monitor Enabled bit
1 = Fail-Safe Clock Monitor is enabled
0 = Fail-Safe Clock Monitor is disabled
bit 10 IESO: Internal External Switchover bit
1 = Internal External Switchover mode is enabled
0 = Internal External Switchover mode is disabled
bit 9-8 BOREN1: Brown-out Reset Selection bits(1)
11 = BOR enabled, SBOREN bit disabled
10 = BOR enabled during operation and disabled in Sleep, SBOREN bit disabled
01 = BOR controlled by SBOREN bit of the PCON register
00 = BOR and SBOREN bits disabled
bit 7 CPD: Data Code Protection bit(2)
1 = Data memory code protection is disabled
0 = Data memory code protection is enabled
bit 6 CP: Code Protection bit(3)
1 = Program memory code protection is disabled
0 = Program memory code protection is enabled
bit 5 MCLRE: MCLR pin function select bit(4)
1 = MCLR pin function is MCLR
0 = MCLR pin function is digital input, MCLR internally tied to VDD
bit 4 PWRT: Power-up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled
bit 3 WDTE: Watchdog Timer Enable bit
1 = WDTE enabled
0 = WDTE disabled and can be enabled by SWDTE bit of the WDTCON register
bit 2-0 FOSC<2:0>: Oscillator Selection bits
111 = EXTRC oscillator: External RC on RA5/OSC1/CLKIN, CLKOUT function on RA4/OSC2/CLKOUT pin
110 = EXTRCIO oscillator: External RC on RA5/OSC1/CLKIN, I/O function on RA4/OSC2/CLKOUT pin
101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN
100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN
011 = EC oscillator: I/O function on RA4/OSC2/CLKOUT pin, CLKN on RA5/OSC1/CLKIN
010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN
001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN
000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN

Note:
1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
2: The entire data EEPROM will be erased when the code protection is turned off.
3: The entire program memory will be erased when the code protection is turned off.
4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.
REGISTER 4: CONFIG2: CONFIGURATION WORD REGISTER 2

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 8</th>
<th>WRT1</th>
<th>WRT0</th>
<th>BOR4V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **P** = Programmable
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

bit 15-11
Unimplemented: Read as ‘1’

bit 10-9
WRT<1:0>: Flash Program Memory Self Write Enable bits

- PIC16F883/PIC16F884
 - 00 = 0000h to 07FFh write-protected, 0800h to 0FFFh may be modified by EECON control
 - 01 = 0000h to 03FFh write-protected, 0400h to 0FFFh may be modified by EECON control
 - 10 = 0000h to 00FFh write-protected, 0100h to 0FFFh may be modified by EECON control
 - 11 = Write protection off

- PIC16F886/PIC16F887
 - 00 = 0000h to 0FFh write-protected, 1000h to 1FFFh may be modified by EECON control
 - 01 = 0000h to 07FFh write-protected, 0800h to 1FFFh may be modified by EECON control
 - 10 = 0000h to 00FFh write-protected, 0100h to 1FFFh may be modified by EECON control
 - 11 = Write protection off

- PIC16F882
 - 00 = 0000h to 07FFh write-protected, entire program memory is write protected
 - 01 = 0000h to 03FFh write-protected, 0100h to 07FFh may be modified by EECON control
 - 10 = 0000h to 00FFh write-protected, 0100h to 07FFh may be modified by EECON control
 - 11 = Write protection off

bit 8
BOR4V: Brown-out Reset Selection bit

- 0 = Brown-out Reset set to 2.1V
- 1 = Brown-out Reset set to 4.0V

bit 7-0
Unimplemented: Read as ‘1’
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELoo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MINDI, MiWI, MPAWM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.