Show all work! Maple can be used for verification of answers and output should be submitted with the homework (check with instructor, if necessary).

1. Let
 \[A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} 1 & 3 & -1 \\ -2 & -5 & 1 \\ 1 & 5 & -2 \end{bmatrix} \]
 (a) Solve the following systems of equations without finding \(A \)
 \[
 \begin{align*}
 ax + by + cz &= 1 \\
 (i) \quad dx + ey + fz &= 1 \\
 (ii) \quad gx + hy + iz &= 1 \\

 \end{align*}
 \]
 (b) Find \(A \).

2. Show that
 \[A = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ b & 0 & c & 0 & 0 \\ 0 & d & 0 & e & 0 \\ 0 & 0 & f & 0 & g \\ 0 & 0 & 0 & h & 0 \end{bmatrix} \]
 is not invertible for any values of the entries.

3. Indicate whether the statement is always true or sometimes false. Justify your answer with a logical argument or a counterexample.
 (a) Every square matrix can be expressed as a product of elementary matrices.
 (b) If \(A \) and \(B \) are \(n \times n \) matrices and \(AB \) is invertible, then so are \(A \) and \(B \).
 (c) If \(A \) is invertible, then \(Ax = x \) has unique solution.

4. Let \(Ax = b \) be a consistent system of linear equations, and let \(x_1 \) be a fixed solution. Show that every solution to the system can be written in the form \(x = x_1 + x_0 \), where \(x_0 \) is a solution to \(Ax = 0 \). Show also that every matrix of this form is a solution.

5. A square matrix \(A \) is called skew-symmetric if \(A^T = -A \). Prove:
 (a) If \(A \) is an invertible skew-symmetric matrix, then \(A^{-1} \) is skew-symmetric.
 (b) If \(A \) and \(B \) are skew-symmetric, then so are \(A^T \), \(A + B \), \(A - B \), and \(kA \) for any scalar \(k \).