Show all work! Maple can be used for verification of answers and output should be submitted with the homework (check with instructor, if necessary).

1. Let \(\mathbf{u} = (1, 1, -4) \), \(\mathbf{v} = (1, 1, 1) \), and \(\mathbf{w} = (1, -4, 1) \).

 (a) Find the components of \(\mathbf{u} - \mathbf{v} \), \(6\mathbf{u} + 2\mathbf{v} \), and \(2(3\mathbf{u} - \mathbf{v}) + (5\mathbf{v} - 7\mathbf{w}) \).

 (b) Find the components of a vector \(\mathbf{x} \), such that \(2\mathbf{u} - \mathbf{v} + \mathbf{x} = 7\mathbf{x} + \mathbf{w} \).

 (c) Find scalars \(c_1 \), \(c_2 \), and \(c_3 \), such that
 \[
 c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w} = (5, 10, 0).
 \]

2. (a) Prove geometrically that if \(\mathbf{u} \) and \(\mathbf{v} \) are vectors in 2- or 3- space, then \(\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\| \).

 (b) Prove analytically the same inequality for 2- space.

 (c) Is it possible to have \(\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\| + \|\mathbf{v}\| \)? Explain your reasoning.

3. (a) Show that if \(\mathbf{v} \) is orthogonal to both \(\mathbf{w}_1 \) and \(\mathbf{w}_2 \), then \(\mathbf{v} \) is orthogonal to \(k_1 \mathbf{w}_1 + k_2 \mathbf{w}_2 \) for all scalars \(k_1 \) and \(k_2 \).

 (b) Let \(\mathbf{u} \) and \(\mathbf{v} \) be nonzero vectors in 2- or 3- space, and let \(k = \|\mathbf{u}\| \) and \(l = \|\mathbf{v}\| \). Show that the vector \(\mathbf{w} = \frac{k}{l} \mathbf{u} + k \mathbf{v} \) bisects the angle between \(\mathbf{u} \) and \(\mathbf{v} \).

4. Consider the parallelepiped with sides \(\mathbf{u} = (3, 2, 1) \), \(\mathbf{v} = (1, 1, 2) \), and \(\mathbf{w} = (1, 3, 3) \).

 (a) Find the volume of this parallelepiped.

 (b) Find the area of the face determined by \(\mathbf{u} \) and \(\mathbf{w} \).

 (c) Find the angle between \(\mathbf{u} \) and the plane containing the face determined by \(\mathbf{v} \) and \(\mathbf{w} \).

 [Note: The angle between a vector and a plane is defined to be the complement of the angle \(\theta \) between the vector and that normal to the plane for which \(0 \leq \theta \leq \pi/2 \).]