be of length \(l \). So the concentration formula (17), the substance remains in the
functions for this term-

\[1 = \frac{4}{\pi} \left(\sin \frac{\pi x}{l} + \frac{1}{3} \sin \frac{3\pi x}{l} + \frac{1}{5} \sin \frac{5\pi x}{l} + \cdots \right) \]

A quantum-mechanical particle on the line with an infinite potential outside the interval \((0, l)\) ("particle in a box") is given by Schrödinger’s equation \(u_t = iu_{xx} \) on \((0, l)\) with Dirichlet conditions at the ends. Separate the variables and use (8) to find its representation as a series.

Consider waves in a resistant medium that satisfy the problem

\[u_{tt} = c^2 u_{xx} - ru_t \quad \text{for } 0 < x < l \]
\[u = 0 \quad \text{at both ends} \]
\[u(x, 0) = \phi(x) \quad u_t(x, 0) = \psi(x), \]

where \(r \) is a constant, \(0 < r < 2\pi c/l \). Write down the series expansion of the solution.

Do the same for \(2\pi c/l < r < 4\pi c/l \). Write down the series expansion of the solution.

Separate the variables for the equation \(iu_t = u_{xx} + 2u \) with the boundary conditions \(u(0, t) = u(\pi, t) = 0 \). Show that there are an infinite number of solutions that satisfy the initial condition \(u(x, 0) = 0 \). So uniqueness is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions (BCs). In the former case, (4.1.2) is replaced by \(u_x(0, t) = u_x(l, t) = 0 \). Then the eigenfunctions are the solutions \(X(x) \) of

\[-X'' = \lambda X, \quad X'(0) = X'(l) = 0, \]

other than the trivial solution \(X(x) \equiv 0 \).

As before, let’s first search for the positive eigenvalues \(\lambda = \beta^2 > 0 \). As in (4.1.6), \(X(x) = C \cos \beta x + D \sin \beta x \), so that

\[X'(x) = -C \beta \sin \beta x + D \beta \cos \beta x. \]